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Abstract

New analytical solutions describing the effects of small-amplitude perturbations in
boundary data on flow in the shallow ice stream approximation are presented. These
solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice
rheology. Comparison is made with corresponding solutions of the shallow ice sheet5

approximation, and with solutions of the full Stokes equations. The shallow ice stream
approximation is commonly used to describe large-scale ice stream flow over a weak
bed, while the shallow ice sheet approximation forms the basis of most current large-
scale ice sheet models. It is found that the shallow ice stream approximation overesti-
mates the effects of bedrock perturbations on surface topography for wavelengths less10

than about 5 to 10 ice thicknesses, the exact number depending on values of surface
slope and slip ratio. For high slip ratios, the shallow ice stream approximation gives a
very simple description of the relationship between bed and surface topography, with
the corresponding transfer amplitudes being close to unity for any given wavelength.
The shallow ice stream estimates for the timescales that govern the transient response15

of ice streams to external perturbations are considerably more accurate than those
based on the shallow ice sheet approximation. In contrast to the shallow ice sheet
approximation, the shallow ice stream approximation correctly reproduces the short-
wavelength limit of the kinematic phase speed. In accordance with the full system
solutions, the shallow ice sheet approximation predicts surface fields to react weakly20

to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice
thicknesses.

1 Introduction

Large-scale ice sheet models commonly employ approximations to the momentum
equations for increased computational efficiency. These approximations are derived25

from the full-set of momentum equations through scaling analysis motivated by the
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size of some geometrical aspect ratios, such as ice thickness and ice-sheet span, and
some expectations about relative sizes of various stress terms. Currently, most large-
scale ice sheet models are based on two different types of approximations, which in this
paper will be referred to as the shallow ice sheet (SSHEET) and the shallow ice stream
(SSTREAM) approximations. The shallow ice sheet approximation corresponds to the5

situation where vertical shear stresses in a shallow ice sheet are large as compared
to horizontal deviatoric stresses. The shallow ice stream approximation, on the other
hand, assumes that the vertical shear stresses are small compared to all other stress
components. Both of these approximations use the shallow ice approximation, i.e. they
describe flow over horizontal scales large compared to the mean ice thickness. Deriva-10

tions of the resulting theories, often using slightly different scaling arguments, can be
found, for example, in Hutter (1983), Morland (1984), Muszynski and Birchfield (1987),
and MacAyeal (1989).

It is clearly of considerable importance to be able to quantify the errors introduced
by these different approximations. The derivations of the SSHEET and the SSTREAM15

approximations give some indications about their applicability to different flow regimes.
It follows, for example, from the scalings used in the SSTREAM approximation that
the slip ratio, the ratio between mean basal motion and mean forward deformational
velocity, must be O(δ−1), where δ is the ratio between typical thickness and horizontal
span (see Appendix A). The errors are also expected to be of some order of the ratio20

between typical ice-thickness and horizontal scales of the problem. For example, for
the SSTREAM approximation the errors are O(δ2). For a given problem of interest
to a modeller it is, however, generally difficult, if not impossible, to come up with firm
quantitative estimates of those errors.

A straightforward possibility of assessing the applicability of these approximations25

to situations commonly encountered in glaciology is to compare solutions to those ob-
tained by using the full-system momentum-balance equations (FS solutions). However,
although possible in principle, the computational cost of a FS solution makes this ap-
proach, in most cases, impractical. A promising solution to this problem has been

25

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-discussion.html
http://www.egu.eu


TCD
2, 23–74, 2008

Shallow ice stream
approximation

G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

suggested by Hindmarsh (2004) who performed a computational analysis of various
approximations used in glaciology by comparing flow disturbances set up by small per-
turbations in the ice surface. Focusing on small-amplitude perturbations reduces com-
putational times making direct estimates of absolute errors feasible. Another advantage
that comes from analysing small-amplitude solutions is the added insight they can give5

into the nature of the approximations. From the scaling analysis of the SSTREAM ap-
proximation it is, for example, far from obvious how the relationship between bed and
surface differs from that given by the SSHEET approximation, and how those descrip-
tions in turn differ from the one given by the FS theory. One of the key advantages to
come from analysing effects of small-amplitude perturbations on flow is that by doing10

so fairly general answers to these questions can be given.
Here I present new analytical solutions to the shallow SSTREAM equations based

on small-amplitude perturbation analysis and compare them with corresponding FS
analytical solutions given in Gudmundsson (2003) and Jóhannesson (1992). Compar-
isons with analytical solutions based on the SSHEET approximation are also made.15

The solutions are valid for linear media and small-amplitude perturbations in surface
topography, surface bedrock, and basal slipperiness.

2 Linear perturbation analysis of the shallow ice stream approximation

The method of comparing these solutions followed here is to cast them in the form
of transfer functions. These transfer functions describe the transient response of the20

media to perturbations in bedrock and surface geometry, and basal slipperiness. The
starting point is the well-known shallow-ice-stream equations (MacAyeal, 1989). The
derivation of these equations is outlined in Appendix A. Further examples of their
derivations, using slightly different scaling arguments, can be found elsewhere (e.g.
MacAyeal, 1989; Schoof, 2006).25

The analysis is done in a coordinate system tilted forward in the x direction by the
angle α, the mean surface slope. As shown in Appendix A the shallow-ice-stream

26
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scalings results in

∂x(4hη∂xu + 2hη∂yv) + ∂y (hη(∂xv + ∂yu)) − (u/c)1/m

= ρgh∂xs cosα − ρgh sinα, (1)

∂y (4hη∂yv + 2hη∂xu) + ∂x(hη(∂yu + ∂xv)) − (v/c)1/m

= ρgh∂yS cosα, (2)5

which are two coupled partial differential equations for u and v . The horizontal velocity
components (u and v) are constant over depth, and the vertical velocity component (w)
varies linearly with depth. In these equation s is the surface, h is ice thickness, η is the
effective ice viscosity, and c is the basal slipperiness. The parameter m and the basal
slipperiness c are parameters in the sliding law defined by Eq. (A5) in Appendix A.10

For a linear viscous media (n=1) and a non-linear sliding law (m arbitrary) these
equations can be linearised and solved analytically using standard methods. We write
f=f̄+∆f , where f stands for some relevant variable entering the problem, and look for a
zeroth-order solution where f̄ is independent of x and y and time t, while the first-order
field ∆f is small but can be a function of space and time.15

The perturbations in bedrock (∆b) and slipperiness (∆c) are step functions of time.
They are applied at t=0, i.e. for t<0 we have ∆b=0 and ∆c=0 and for t≥0 both ∆b
and ∆c are some constants. Using this history definition the solutions for the velocity
field and the surface geometry become functions of time.

2.1 Bedrock perturbations20

We start by considering the response to small perturbation in basal topography (∆b).
Writing h=h̄+∆h, s=s̄+∆s, b=b̄+∆b, where h is ice thickness, s surface topography,
and b bedrock topography, and furthermore u=ū+∆u, v=∆v , w=∆w, where u, v , and
w are the x, y , and z components of the velocity vector, and c=c̄ where c is the
basal slipperiness (see Eq. A5) and inserting into (1) and (2) and solving the resulting25

27
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equations gives the zeroth-order solution

ū = c̄ρgh̄ sinα. (3)

The zeroth-order solution represents a plug flow down an uniformly inclined plane.
The first-order field equations are

4ηh̄∂2
xx∆u + 3ηh̄∂2

xy∆V + ηh̄∂2
yy∆u − γ∆u,5

= ρgh̄ cosα∂x∆s − ρg sinα∆h, (4)

and

4ηh̄∂2
yy∆v + 3ηh̄∂2

xy∆u + ηh̄∂2
xx∆v − γ∆v,

= ρgh̄ cosα∂y∆s, (5)

where10

γ =
τ1−m
d

mc̄
, (6)

and

τd = ρgh̄ sinα, (7)

is the driving stress.
The domain of the first-order solution is transformed to that of the zeroth-order prob-15

lem. This is done by writing f=f̄+∆f+∂z f̄∆z where f is any given term that enters the
boundary conditions, and ∆z is either ∆s or ∆b.

To first order the upper and lower boundary kinematic conditions are

∂t∆s + ū ∂x∆s −∆w = 0, (8)

and20

ū ∂x∆b −∆w = 0, (9)
28
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respectively. In (8) the surface mass-balance perturbation has been set to zero. The
jump conditions for the stresses have already been using in the derivation of (1) and
(2) and do not need to be considered further.

This system of equations is solved using standard Fourier and Laplace transform
methods. All variables are Fourier transformed with respect to the spatial variables5

x and y and Laplace transformed with respect to the time variable t. In the forward
Fourier transform the two space variables both carry a positive sign and the wavenum-
bers in x and y direction are denoted by k and l , respectively. In the forward Laplace
transform the time variable carries a negative sign, and the complex Laplace argument
is denoted by the variable r .10

The Fourier and Laplace transforms of the first order field Eqs. (4) and Eqs. (5) are

4ηh̄k2 ∆u + 3ηh̄kl ∆v + ηh̄l2 ∆u + γ∆u

= ρg sinα(∆s −∆b) + ikρgh̄∆s cosα, (10)

and

4ηh̄l2 ∆v + 3ηh̄kl ∆u + ηh̄k2 ∆v + γ∆v15

= ilρgh̄∆s cosα, (11)

respectively. The Fourier transformed mass-conservation equation is

− ik ∆u − il ∆v + ∂z∆w = 0. (12)

Equations (10) to (12) can now be solved for ∆u, ∆v and ∂z∆w. Vertical integration of
∂z∆w and insertion into the kinematic boundary condition at the surface20

∆w(s̄) = (r − ikū)∆s, (13)

gives the surface response, and after some simple algebraic manipulations, one finds
that the (complex) ratio between surface and bedrock amplitude Tsb=∆s/∆b is given
by

Tsb(k, l , r) = −
ik(ū + τd/ξ)

r(r − p)
, (14)25

29
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where

p = i/tp − 1/tr , (15)

and the two timescales tp (phase time scale) and tr (relaxation time scale) are given
by

t−1
p = k(ū + τd/ξ), (16)5

and

t−1
r = ξ−1j2τd h̄ cotα, (17)

and furthermore

ξ = γ + 4h̄j2η, (18)

and j2=k2+l2. An inverse Laplace transform of Eq. (14) using contour integration leads10

to

Tsb(k, l , t) =
ik(ūξ + τd )

pξ
(ept − 1). (19)

This transfer function describes the relation between surface and bedrock geometry,
where ∆s(k, l , t)=Tsb(k, l , t)∆b(k, l ). Other transfer functions are defined in an analo-
gous manner.15

In Gudmundsson (2003) the relaxation time scale is referred to as the decay time
scale and denoted by td . As pointed out by Hindmarsh (2004), depending on the situ-
ation, the term “growth rate” is presumably more descriptive. Here the term “relaxation
time scale” will be used as the time scale tr determines how long it takes for the the
transient solution to “relax” toward the steady-state limit.20

The relationship between surface velocity and bedrock is found to be given by

Twb = k(kū − ept(ip + kū))(ūξ + τd )(pξ)−1, (20)

30
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for the vertical velocity component (w), and

Tub = −
p(γ + h̄(k2 + 4l2))ept

h̄pνξ

+
τd h̄ cotα(l2τd − k2ūν)(1 − ept)

h̄pνξ
, (21)

and

Tvb =
klτd (3pηept + (ept − 1)(ūν + τd ) cotα)

pνξ
, (22)5

where

ν = γ + h̄j2η, (23)

for the longitudinal (u) and the transverse (v) components, respectively.

2.2 Perturbations in basal slipperiness

Transfer functions describing the effects of a spatial variations in basal slipperiness10

on surface geometry and surface velocities can be derived in a similar fashion. In
Appendix B the solution procedure is outlined and expressions for the corresponding
transfer functions listed.

2.3 Surface perturbations

We now determine the transient evolution of a surface undulation prescribed at t=0.15

By writing h=h̄+∆s, s=s̄+∆s, b=b̄, u=ū+∆u, v=∆v , w=∆w, and c=c̄, inserting into
(1) and (2) and solving the resulting equations together with (12) and the kinematic
boundary condition at the surface

w = r∆s − ikū∆s − s(t = 0),
31
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it is found that the surface evolution as a function of time is given by

s(k, l , t) = Tss0
s(k, l , t = 0), (24)

where

Tss0
= ep t. (25)

The velocity components are given by5

Tws0
= (ik − j2h̄ cotα)τdξ

−1 ep t, (26)

Tus0
=
τd (γ(1 + ψ) + h̄η(j2ψ + k2 + 4l2))

h̄νξ
ept, (27)

where

ψ = ikh̄ cotα, (28)

and10

Tvs0
=

il (3ikη + ν cotα)τd
νξ

ep t. (29)

2.4 Non-dimensional forms of the transfer functions

The transfer functions listed above are all in dimensional form. It is often much more
convenient to work with the transfer functions in a non-dimensional form. For this
purpose the same scalings as used in Gudmundsson (2003) will be employed. The15

velocity is given in units of mean deformational velocity of the full-system solution. All
spatial scales are in units of mean ice thickness (h̄) and stresses in units of driving
stress (τd ). It follows from these scalings that the non-dimensional viscosity, E , is
given by E=ūdη/(h̄τd )=1/2, and the mean non-dimensional basal slipperiness C̄ is

C̄ = c̄ τmd /ūd = ūb/ūd .20

32
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The mean non-dimensional slipperiness is therefore equal to the slip ratio, i.e. the
ratio between mean basal sliding velocity (ūb) and the mean forward deformational
velocity (ūd ). One obtains the non-dimensional form of the transfer functions from the
dimensional one using the substitutions c̄ 7→ C̄, η 7→ 1/2, h̄ 7→ 1, ū 7→ C̄, k 7→ k,
l 7→ l , γ 7→ (mC̄)−1, and ρgh̄ sinα 7→ 1.5

Note that since in the shallow ice stream approximation ūd=O(δ2) and we are ignor-
ing all fields to this order, we have ū 7→ C and not ū 7→ C+1 as is the case for the
full-system solutions and the solutions of the shallow ice sheet approximation. In these
non-dimensional units, the requirement that the slip ratio is O(δ−2) for the shallow ice
stream approximation to be valid implies C̄+1≈C̄ or C̄�1 for small surface slopes.10

In non-dimensional form the solutions often take a considerably simpler shape. For
example the non-dimensional forms of the timescales td and tr , and the transfer func-
tion Tsb are, respectively,

td = (2 + (j2mC̄)−1) tanα,

tp =
1

kC̄(1 + m
1+2j2mC̄

)
,15

and

Tsb =
k(1 + (1 + 2j2C̄)m)

k +m(k + 2kj2C̄ + ij2 cotα)
(1 − eit/tpe−t/tr ).

Note that in all of these three expressions, the short wavelength limit (k and l→+∞) is
independent of the sliding law exponent m.

3 Discussion20

The main subject of the following discussion is an intercomparision of various SSHEET,
SSTREAM and FS small-amplitude solutions. The SSHEET solutions are known for

33
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non-linear media and a non-linear sliding law (Nye, 1960; Fowler, 1982; Jóhannesson,
1992). Small-amplitude FS solutions have so far only been derived for linear media
and a linear sliding law (Reeh, 1987; Jóhannesson, 1992; Gudmundsson, 2003). The
SSTREAM solutions, derived here for the first time, are valid for linear media and a
non-linear sliding law. It follows that intercomparision with the correct FS solutions can5

only be done for n=1 and m=1, and for this reason most of the discussion is limited
to this case. The only exception to this is a brief description given below of the the
relationship between bed and surface geometry in the SSTREAM approximation for
non-linear sliding law. A full discussion of the non-linear aspects of the solutions will
be done elsewhere.10

3.1 Time scales

As seen from the solutions listed above and in Appendix B the transient behaviour is
completely determined by two time scales: the phase time scale tp, and the relaxation
time scale tr . The term “phase time scale” is used for tp because it determines how
quickly the phase of the surface fields changes with time (see for example Eqs. 24 and15

25). As mentioned above the tr time scale determines how quickly the solutions “relax”
toward the steady state limit.

The properties of the phase time scale can most easily be understood by looking
at the phase velocity vp which is, by definition, given by vp=((ktp)−1, (l tp)−1). The
SSTREAM phase speed is20

|vp| = (jtp)−1 = cosθ

(
ū +

τd
γ + 4j2h̄η

)
, (30)

in dimensional units. The angle θ is the angle between the wave vector k=(k, l ) and the
x axis. This is also the angle between the x axis and a vector lying in the xy plane and
normal to the crests of the sinusoidal perturbations. We have cosθ=k/j and λ=2π/j
where λ is the wavelength.25

34
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It is instructive to compare phase speeds for different approximations. Figure 1a
shows the phase speed for θ=0 as a function of wavelength for the shallow ice stream
approximation (dashed line), the shallow ice sheet approximation (dashed-dotted line),
and for the full-system solution (solid line) for m=1 and n=1. Note that in the figure the
phase speeds have been normalised by the surface velocity as given by the full-system5

solution (equal to C̄+1 in non dimensional units).
In the shallow ice sheet (SSHEET) approximation the phase speed (dashed-dotted

curve in Fig. 1a) is, for θ fixed, independent of the wavelength. For θ=0 the SSHEET
phase speed is (n+1)ud+(m+1)ub, where ud is the deformational velocity and ub the
basal sliding velocity. This is a well known (Nye, 1960) and often used expression for10

the speed of surface waves of on glaciers. The long-wavelength limit of the SSHEET
phase speed is correct, but the short wavelength SSHEET limit is incorrect. The correct
FS limit for θ=0 as λ→0 is |vp|=us which, in physical terms, is clearly also the correct
expression.

As can be seen from direct inspection of Eq. (30), and is demonstrated by Fig. 1a,15

the SSTREAM phase speed (dashed curve) is quite similar to the FS phase speed for
C̄�1. In particular, in contrast to the SSHEET phase speed, the SSTREAM phase
speed given by Eq. (30), valid for arbitrary m and n=1, is not independent of λ. The
λ→+∞ SSTREAM limit is |vp|=ū(1+m) cosθ, which is the FS limit for ud=0, and for
λ→ 0 the SSTREAM phase speed is to equal to mean surface speed. Hence, in both20

the λ→0 and the λ → +∞ limits, the SSHEET phase speed is equal to the FS phase
speed.

The differences between the FS and the SSTREAM phase speeds are small for pa-
rameter values typical of an active ice stream. This can be seen most easily from
direct inspection of the differences between tp given by Eq. (16) and Eq. (73) in Gud-25

mundsson (2003). Figures 2a and b show the FS and the SSTREAM phase speeds
(|vp|), respectively, as a functions of both wavelength λ and the angle θ for C̄=100 and
α=0.002. For λ held constant the phase speed decreases monotonically as function of
θ and, as expected, goes to zero as θ → π/2. Comparison of Figs. 2a and b reveals

35
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only minor differences.
The wavelength dependency of the phase velocity gives rise to dispersion in the FS

and the SSTREAM solutions. In these theories it is therefore somewhat misleading to
interpret the phase velocity as the velocity by which surface disturbances propagate.
The group velocity is a better measure of this velocity, and as shown in Gudmundsson5

(2003) the FS group velocity can be significantly different from the phase velocity and
for some wavelengths even smaller than the material surface velocity.

One finds that in the SSTREAM approximation the x and the y components of the
group velocity, (ug, vg), are given by

ug = ū +
γ + 4(l2 − k2)h̄ητd

(γ + 4j2h̄η)2
, (31)10

and

vg = −
8kl h̄ητd

(γ + 4j2h̄η)2
. (32)

The x component of the group velocity is shown in Fig. 1b for m=1 as a function of
wavelength for the same surface slope and slip ratio values as used in Fig. 1. The
figure shows that the SSTREAM approximation is closer to the exact FS solution than15

the SSHEET approximation. Note also that for the particular values of surface slope
and slipperiness used in the Fig. 1b, the group velocity is smaller than the mean surface
speed for wavelength between 8 to 50 mean ice thicknesses.

In Fig. 3 the relaxation time scale (tr ) is plotted in dimensional units (years) as a func-
tion of wavelength for C̄=100 and α=0.002 and m=1. (Note that the relaxation time20

does not depend on the angle θ.) As indicated by the figure, and direct inspection of the
corresponding equations shows, the SSTREAM relaxation time scale closely approxi-
mates the FS relaxation time scale down to wavelengths of about 10 ice thicknesses.
Of particular interest is the fact that in accordance with the full-system solution, but in
contrast to the SSHEET approximation, there is a range of wavelengths over which the25
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SSTREAM relaxation time scale is independent of λ (see Fig. 3). The only qualitative
aspect of tr not captured by the SSTREAM approximation is the increases in tr with
decreasing λ for λ less than about ten ice thicknesses. For C̄�1 the expression for
tr given by the SSTREAM solution is a much better approximation to tr than the one
given by the SSHEET solution. For the particular set of parameters used in Fig. 3 both5

the SSTREAM and the FS solutions give, for the range 10h̄<λ<100h̄, a constant value
for tr on the order of ten years. The SSHEET solution gives, for the same range values,
estimates of tr ranging from hours to days.

Of the two time scales tr and tp it can be argued that tr is the more important
one. A surface wave will travel a distance equal to its wavelength in the time 2πtp. In10

the same time its amplitude will decrease by the factor e2πtp/tr (See Eq. 25). The ratio
2πtp/tr , thus, can be thought of as giving the relative importance of relaxation/diffusion
to wave propagation. As pointed out by Jóhannesson (1992) this ratio is, for typical
situations encountered in glaciology, usually larger than one. It follows that the time
scale for local mass redistribution on glaciers and ice sheets is essentially given by15

tr , and takes place much faster than the time scale tp would suggest. The close
agreement between tr as given by the FS and the tr as calculated on basis of the
SSTREAM approximation gives added confidence in the applicability of the SSTREAM
approximation to situations typical of active ice streams.

3.2 Bedrock perturbations20

Figure 4 shows the steady-state bedrock-to-surface transfer amplitude (|Tsb|) as a func-
tion of wavelength. The figure shows the FS, the SSHEET, and the SSTREAM trans-
fer amplitudes, respectively (based on Eqs. 82 and 26 in Gudmundsson, 2003, and
Eq. 19). Surface slope (α=0.002) and slip ratio (C̄=100) values are typical for active
ice streams. The three curves differ in a number of important ways.25

The steady-state SSHEET transfer amplitude (dotted line in Fig. 4) is strictly increas-
ing as a function of wavelength and does not show the pronounced peak in bed-to-
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surface transfer for wavelengths from about 1 to 10 ice thicknesses seen in FS solution
(solid line).

The SSTREAM solution (dashed line) overestimates the transfer at short wave-
lengths and gives a physically wrong limit of |Tsb| → 1 for λ→0. Despite the incorrect
limit for λ→ 0, the SSTREAM solution for Tsb is, and this is generally the case for high5

slip ratios, a considerably better approximation to the FS solution than the correspond-
ing SSHEET solution. For the particular set of values used in Fig. 4 the SSTREAM
solution agrees within a few percent to the FS solution down to wavelengths of about
eight ice thicknesses. The SSHEET solution is only similarly accurate for wavelengths
larger than about 100 ice thicknesses.10

From Eq. (19) it follows that the steady state SSTREAM transfer function for l=0 is

Tsb =
1

1 + ikm cotα
1+m(1+2C̄k2)

, (33)

where dimensionless units have been used. Hence for θ=0, Tsb → 1 as C̄ → ∞
irrespective of the values for surface slope α, wavelength λ, and sliding law exponent
m. The value of C̄=100 used in Fig. 4 can hardly be considered very large for typical15

active ice streams, and if a value of C̄=1000 is used together with typical surface slopes
of about 0.002 to 0.004, it follows that |Tsb| is fairly close to unity for all wavelengths.

The minimum in the SSTREAM transfer amplitude given by Eq. (33) is reached for
the wavelength

λx = 2π

√
2C̄m
1 +m

, (34)20

where kλx=2π, and the minimum is given by

min
k

|Tsb| =
1√

1 + m cot2 α
8C̄(1+m)

. (35)
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For bedrock undulations aligned transversely to the main flow direction the steady-
state ratio between surface and bedrock amplitudes is in the SSTREAM approximation
always larger than that given by Eq. (35). The wavelength given by Eq. (34) does not
depend on surface slope α. As Fig. 4 suggests, the (global) minimum in SSTREAM
transfer amplitude (Tsb) closely approximates the corresponding (local) minimum of the5

FS transfer amplitude for C̄�1.
Examples for non-steady Tsb amplitudes are shown in Fig. 5. The dashed lines

in the figure are calculated using Eq. (19) and are based on the shallow ice stream
approximation, using the additional small-amplitude assumption ∆b/h̄�1. The solid
lines are calculated using Eq. (82) in Gudmundsson (2003) and are correct for any10

value of C̄ and any wavelength λ as long as ∆b/h̄�1. The times are given in non-
dimensional units. These can be translated to dimensional units through multiplication
with h̄/ūd , where ūd is the mean deformational velocity. As an example, for a 1000 m
thick ice stream where the surface velocity is 1 m d−1, t=0.001 corresponds to about
3.3 months.15

The figure shows the relatively slow increase in |Tsb| with time for long wavelengths
(larger than about 100 mean ice thicknesses) toward the steady-state long-wavelength
limit of |Tsb|=1. The rate of increase toward the steady-state limit is determined by
tr which, for long wavelengths, increases quadratically as a function of wavelength
(see Eq. 17 and Fig. 3), hence the slow increases in |Tsb| for long wavelengths. Over20

wavelengths less than about 5 mean ice thicknesses the SSTREAM relaxation time is
smaller than the FS relaxation time (see Fig. 3). Consequently, over this range of wave-
lengths the SSTREAM amplitudes grow faster with time than the FS amplitudes. An-
other noticeable aspect of Fig. 5 is the oscillating behaviour of the transfer amplitudes
with wavelength. These are caused by temporal fluctuations (kinematic oscillations)25

in |Tsb| that are governed by the phase time scale tp. As the figure shows, transient
amplitudes can be larger than unity, and when this happens surface amplitudes are
larger than the bedrock amplitudes. As follows from inspection of Eq. (19) and Eq. (82)
in Gudmundsson (2003), kinematic oscillation are particularly pronounced for 0<t<tr
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whenever tp<tr . The consequence can be an up to twofold increase in transfer am-
plitudes as compared to the corresponding steady-state limit. As mentioned above,
the steady-state λ→0 limit of the SSTREAM Tsb amplitude is unity, and for short wave-
lengths (λ/h̄<1) the transient value can be as large as two, whereas the correct value
for these wavelengths (as given by the FS solution) is always close to zero.5

The Tsb transfer amplitudes in Figs. 4 and 5 are plotted as functions of longitudi-
nal wavelength, that is for sinusoidal bedrock undulations aligned transversely to the
main flow direction. This corresponds to the situation θ=0. Figs. 6a and b show the
SSTREAM and the FS transfer amplitudes, respectively, as functions of both θ and
λ. As Fig. 4 showed for θ=0, the main difference between the SSTREAM and the10

FS Tsb amplitudes is the short-wavelength limit. Irrespectively of θ the SSTREAM
short-wavelength limit always equal to unity, whereas the correct limit is zero. The only
exception to this is for the θ = π/2 where both transfer functions are identically zero.

In Figs. 7a and b the Tub transfer amplitudes of, respectively, the SSTREAM and
FS solutions are shown in a non-dimensionalised form. A simple way of interpreting15

the numerical contour values is to think of them as ratios between mean deformational
velocity and mean ice thickness (ūd/h̄). In the figures, a slip ratio of 99 is used and
the mean surface FS velocity is equal to 100. Where the transfer amplitudes are equal
to, lets say 50, a sinusoidal bedrock perturbation with an amplitude corresponding to
10% of the mean ice thickness produces a 0.1×50=5ūd large perturbation in surface20

velocity or a 5 % perturbation in mean surface velocity.
As the Figs. 7a and b suggest, and inspection of the corresponding analytical solu-

tions confirms, the short wavelength limits of the SSTREAM and the FS Tub transfer
amplitudes are both equal to zero. This is physically the correct limit and there is there-
fore no problem similar to that of the Tsb transfer amplitude for λ→ 0. Quantitatively the25

Tub amplitudes tend to be somewhat underestimated by the SSTREAM approximation
when the shallow-ice condition λ/h̄�1 is not fulfilled.

For bedrock disturbances running along the flow (k=0) the resulting perturbation in

40

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-discussion.html
http://www.egu.eu


TCD
2, 23–74, 2008

Shallow ice stream
approximation

G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

surface velocity is, irrespectively of t, given by

Tub = − 2mC̄

2 + l2mC̄
, (36)

as can readily be derived from Eq. (21). The maximum value of |Tub| is reached for
k=0 in the limit λ → ∞. In the FS theory this limit is C̄+1 which is the physically
correct limit. In the SSTREAM theory this limit is, for m=1 where these results can be5

compared, equal to C̄, the difference being due to the simple fact that the SSTREAM
approximation ignores the internal ice deformation.

For the transverse amplitudes (|Tvb|) shown in Figs. 8a and b the only qualitative
difference is found for θ=π/4. For this value of θ the SSTREAM transfer amplitude |Tvb|
has one local maximum as function of λ but the FS solution two. Again the SSTREAM10

Tvb amplitudes are somewhat underestimated when the shallow-ice condition λ/h̄�1
is not fulfilled. For the particular set of parameters using in Figs. 7a and b, and Figs. 8a
and b the SSTREAM approximation underestimates the effects of bed perturbations on
surface velocities for wavelengths less than about 10 ice thicknesses.

3.2.1 Surface topography and non-linear sliding15

The discussion given above has mostly dealt with the n=1 and m=1 case. In Fig. 9 the
SSHEET and the SSTREAM ratios between surface and bedrock amplitude (|Tsb|) are
plotted for m=1 and m=3 for n=1. In addition the FS ratio is shown for m=1. There are
no analytical FS solutions known for m 6= 1. The SSTREAM ratios shown (blue lines
in Fig. 9) follow from Eq. (19), the FS ratio (black line) from Eq. (82) in Gudmundsson20

(2003), and the SSHEET ratios (red lines) from Eq. (4.4.7) in Jóhannesson (1992).
As the Jóhannesson (1992) thesis is presumably not widely available I list here his

SSHEET expression for the Tsb transfer function. It is particularly simple and valid for
any value of n and m. It can be written in the form

Tsb =
i

i − λ?/λ
, (37)25
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where

λ? =

(
n(n+1)
n+2 +mC̄

)
n + 1 + C̄(m + 1)

cotα, (38)

is in units of mean ice thickness. The long and the short wavelength limits of SSHEET
transfer amplitude as given by Eq. (37) are independent of n and m, and the range
of wavelengths where the transfer is, in absolute terms, significantly dependent on n5

and m is determined by the value of λ?. For moderate values of n and high slip ratios
(C̄ � 1) we have

λ? ≈ m
m + 1

cotα.

Hence, the surface slope is the most important parameter affecting the SSHEET
bedrock-to-surface transfer characteristics for high slip ratios and the transfer is only10

moderately affected by the value of m.
Presumably the most interesting aspect of Fig. 9 is that the differences between the

m=1 and them=3 cases are only of any significance for wavelengths longer than about
100 ice thicknesses. This is so for both the SSHEET and the SSTREAM solutions.
By analysing the SSTREAM transfer function given by Eq. (19) it is found that the15

sensitivity of |Tsb| to m is small at large and small wavelengths and decreases with
decreasing slope. In particular, for wavelengths smaller than the wavelength for which
the minimum in SSTREAM amplitude is reached (see Eq. 34), the transfer amplitudes
are not significantly affected by the value of the sliding law exponent m.

It is not clear if this insensitivity of Tsb to the value of the sliding law exponent m for20

wavelength smaller than the one given by Eq. (34) is also true of the FS solutions. If so,
then that would suggest surface topography on active ice streams to be a weak function
of m. The only study on the effects of non-linear sliding on the bed-to-surface transfer
amplitudes seems to be that of Raymond and Gudmundsson (2005). They calculated
numerically the Tsb amplitude for various values of m. Figure 11 in Raymond and25
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Gudmundsson (2005) suggests that for wavelengths smaller than the one for which the
local minimum in transfer amplitudes of the FS solutions is reached, changing m from
1 to 3 has almost no effect on transfer amplitudes.

3.3 Basal slipperiness perturbations

We now consider the effects of spatial variations in basal slipperiness on surface5

fields. Basal slipperiness is here defined as the function c(x, y) in the basal sliding
law (see Eq. A5). The non-dimensional slipperiness is written using an upper case
letter (i.e. C(x, y)). We have C(x, y)=c(x, y)τd/ūd , and write C(x, y)=C̄(1+∆C(x, y))
where C̄ is the spatially averaged slipperiness and ∆C(x, y) the (fractional) slipperiness
perturbation introduced at t=0. The transfer functions listed in Appendix B give the re-10

lationships between surface fields and the basal slipperiness perturbation ∆C(x, y) in
frequency space. We have, for example, s(k, l , t)=Tsc∆C(k, l ). Our main focus here
is on the differences between the corresponding SSHEET, SSTREAM and the FS so-
lutions and therefore the discussion is mostly limited to the m=1 and n=1 case where
small-amplitude analytical solutions to all of FS, SSHEET, and the SSTREAM problems15

are available.
Figure 10 shows basal-slipperiness to surface geometry transfer amplitudes (Tsc)

based on Eq. (B3) (circles) for the SSTREAM theory. For comparison the predictions
of the FS (solid lines ) and the SSHEET (crosses) theories (Eqs. 83 and 27 in Gud-
mundsson, 2003) for the same parameter set are shown as well. The biggest difference20

between the SSHEET and the FS solution is at long-wavelengths. Both the FS and the
SSHEET long wavelength limits (λ→∞ for θ=0) are equal to C̄/(2(1+C̄)). For the
SSTREAM solution this limit is 1/2 independently of C̄ (see Eq. B7). For C̄�1 these
two different expressions, of course, give numerically quite similar answers. For C̄≥19
the difference is, for example, less than 5%. Interestingly, irrespectively of how slippery25

the bed is, the SSHEET approximation gives an equally good or better description
than the SSTREAM approximation of the relationship between surface topography and
basal slipperiness.
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Figure 11 shows the velocity transfer amplitudes |Tuc|, |Tvc|, and |Twc|. Shown are
both the FS solutions (solid lines) and those based on the SSTREAM approximation
(dashed lines). The SSTREAM solutions are given by Eqs. (B4), (B5) and (B6). The
FS solutions can be found, or easily derived, from Gudmundsson (2003). The trans-
fer functions are plotted in non-dimensional form. The scale for the transfer functions5

follows from the definitions ∆u=Tuc∆C, ∆v=Tvc∆C, where ∆C is the (fractional) slip-
periness perturbation. Since the velocity is scaled with the mean deformational velocity
ūd and ∆C has no dimensions, ūd is the scale for these transfer functions.

Generally speaking there is a good agreement between the velocity transfer func-
tions of the FS and the SSTREAM solutions (see Fig. 11). Nevertheless, there are a10

number of noticeable differences. Like the Tsc transfer amplitude, the long-wavelength
limit of the Tuc is incorrect. For n=1 and m=1 it is C̄/2 for the SSTREAM solution, but
C̄2/(2(1+C̄)) for the FS solution. The effects of basal slipperiness perturbations are
therefore somewhat overestimated for long-wavelengths, although for high slip ratios
typical of active ice streams this error is small. Over wavelengths less than about 10015

ice thicknesses the horizontal forward velocity component (u) reacts weakly to basal
slipperiness perturbations. In Fig. 11, for example, the FS Tuc transfer amplitudes
(solid line) are less than 5% of mean surface speed for this wavelength range. The
SSTREAM approximation further underestimates this weak response (see Fig. 11).

In comparison to the FS amplitude the SSTREAM Twc amplitudes are too large (see20

Fig. 11). This difference is in most situations of no real concern, however. The most
conspicuous aspect of both the FS and the SSTREAM Twc transfer amplitudes is how
small they are both in absolute terms and in comparison to |Tuc| and |Tvc|. In fact the
|Twc| amplitudes are so small that for active ice streams the vertical velocity component
can be considered to be effectively insensitive to any spatial variations in basal slipper-25

iness. As an example, for C̄=10 and α=0.002, which are the values used in Fig. 11,
the maximum of the FS Twc amplitude is about 0.025. The corresponding perturbation
in the vertical surface velocity component is therefore 0.025 ūd which for most active
ice streams where the surface velocity is a few hundred to a few thousand times larger
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than ūd is negligible in comparison to the mean horizontal velocity. In contrast, the
maximum perturbation in longitudinal velocity (u) is C̄/2 for C̄�1 or about 50 % of the
mean surface velocity, and as can be seen from Fig. 11 or direct inspection of Eq. (B5).
Equally large perturbations in transverse velocity are possibly for perturbations in basal
slipperiness that are sufficiently misaligned with respect to the mean flow direction.5

The transfer amplitude Tuc describing the response of the horizontal forward velocity
component (u) to a basal slipperiness perturbation is shown as a function of wave-
length (λ) and orientation (θ) in Fig. 12. This Figure should be compared to Fig. 7 giving
the response to a bedrock perturbation for the same set of parameters. The most sig-
nificant difference between Tub the Twc amplitudes is the comparatively weak response10

of u to perturbation in basal slipperiness that are aligned approximately transversely to
the mean flow (θ<40 degrees) for wavelengths less than about 100 ice thicknesses. As
follows from Eq. (B4) and demonstrated in Fig. 12, the strongest response is |Tuc|=C̄+1
for basal slipperiness perturbations aligned with the flow (θ=π/2) in the limit λ→∞.

Summarising, it is found that the SSTREAM transfer functions describing the re-15

sponse of surface fields to spatial perturbations in slipperiness compare favourably to
the accurate FS solutions when the conditions λ/h̄�1 and C̄�1 are fulfilled. This is
of course to be expected. Possibly somewhat unexpectedly, the SSHEET Tsc transfer
functions are almost equally accurate for this parameter range. Whenever these con-
ditions are not fulfilled, the resulting errors do not, as far as can be seen, result in any20

clearly non-physical description by the SSTREAM theory.

3.4 ISMIP-HOM Experiment F

As an illustration of differences between the full-system and the shallow ice stream
solutions Figs. 13a and b show an example of the surface response to a Gaussian-
shaped bedrock protuberance calculated using both the FS and the SSTREAM trans-25

fer functions. The parameters of the example are motivated by the definition of the
Benchmark Experiment F for higher-order ice sheet models of the ongoing model in-
tercomparision project ISMIP-HOM (see http://homepages.ulb.ac.be/∼fpattyn/ismip/).
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Of the mean surface velocity, half is due to internal ice deformation and the other half
to basal sliding (C̄=1). The flow is down an uniformly inclined plane with a mean
slope of 3 degrees. The bedrock perturbation is a Gaussian shaped peak situated at
(x, y)=(0,0). The peak has a width of 10 h̄ and amplitude of 0.1 h̄. Periodic boundary
conditions are used with a periodicity of 400 h̄ in both x and y directions.5

If either the slip ratio is not large compared to unity, or the horizontal scale of in-
terest is not large compared to mean ice thickness, significant deviations between the
SSTREAM and the FS solutions can be expected. In the experiment the slip ratio does
not fulfil the condition C̄�1 and it comes as no surprise that there are some differ-
ences between the upper (SSTREAM solution) and the lower (FS solution) halves of10

Figs. 13a and b. However, if anything, the performance of the SSTREAM solutions
seems surprisingly good. There are, for example, only fairly small differences seen in
the perturbed surface topography (Fig. 13a). The amplitude of the FS surface topogra-
phy perturbation (lower half of Fig. 13a) is a bit larger than that of the SSTREAM one
(upper half of Fig. 13a) but otherwise the surface shapes are in qualitatively terms the15

same.
The FS velocity perturbations are generally larger than the those of the SSTREAM

approximation (see Fig. 13b). This is partly due to the simple fact that the mean
SSTREAM velocity is equal to 1 while the mean FS velocity is twice as large. One
could argue that the mean slip ratio in the SSTREAM theory should be redefined to20

give the same mean surface velocity as the FS solution. In the experiment this would
imply using C̄=2 when calculating the SSTREAM solutions. When this is done, the
differences between the upper and the lower halves in Fig. 13b become considerably
smaller and the overall magnitude more similar. Irrespectively of which value of C̄ is
used, the FS velocity solution has a more detailed short-scale structure. This aspect25

of the solution can be understood by considering the corresponding transfer functions
directly. Comparison of Fig. 7a with b, and Fig. 8a with b (despite the parameters
used in these figures being different from Experiment F) also demonstrates that the FS
velocity transfer amplitudes are for short to intermediate wavelengths generally larger
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than those of the SSTREAM theory.
If the width of the Gaussian peak is decreased from 10 h̄ to, lets say, 1h̄, and the

slip ratio increased to, again lets say 100, the differences in the calculated FS and
the SSTREAM surface response become more pronounced. The amplitude of the
SSTREAM topography perturbation is then much larger than that of the FS solution,5

and in fact quite similar to the shape of the bedrock perturbation itself. This aspect
of the SSTREAM solution was discussed above and is caused by the fact that the
SSTREAM Tsb amplitude is close to unity for small wavelengths (see also Figs. 6a and
b).

4 Summary and conclusions10

As expected the comparison between the analytical FS and SSTREAM solutions
shows that the SSTREAM approximation is highly accurate for long wavelengths
(λ/h̄�1) and high slip ratios (C̄�1). The SSTREAM approximation is in these circum-
stances a much better approximation to the FS solutions than the SSHEET approx-
imation. However, somewhat disappointingly, when these conditions are not fulfilled15

the SSTREAM approximation is not just inaccurate but gives rise to some physically
unrealistic results. In particular, the ratio between surface and bedrock topography is
vastly overestimated. Whereas the correct ratio is close to zero for λ�h̄ the SSTREAM
gives a ratio close to unity. The SSHEET theory, which also is inaccurate for λ�h̄, fails
in this respect in a more physically realistic manner by underestimating the ratio and20

giving the correct limit of zero as λ→0. A related somewhat less than satisfying aspect
of the |Tsb| SSTREAM transfer amplitudes is the absence of the local maxima in the Tsb
amplitudes as function of wavelengths seen in the FS solution.

The physically wrong limit of the SSTREAM Tsb amplitude for λ→0 is of some con-
cern. It has, among other things, implications for surface-to-bed inversion. Because25

this Tsb transfer amplitude limit is equal to unity, small scale surface undulations (λ<h̄)
do not get amplified through a direct inversion and the effects of surface data errors
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might be underestimated. There is also some danger of the spatial resolving power
of an SSTREAM surface-to-bed inversion to be overestimated. Further research into
these issues is needed before firm quantitative statements can be made.

The only previous work dealing with the effects of small-amplitude perturbations in
boundary data on solutions of the SSTREAM theory is the numerical study of Hind-5

marsh (2004). He calculates Tsb transfer amplitudes and both the tr and the tp
timescales for linear and non-linear media. The L1L1 approximation used by Hind-
marsh (2004) is an improved version of the SSTREAM theory discussed here which
includes the contribution of internal ice deformation to the velocity. For high slip ratios
the L1L1 approximation is effectively equal to the SSTREAM approximation. Fig. 5 in10

Hindmarsh (2004) calculated for n = 3 shows the same general features of transfer the
amplitude Tsb and the times scales tp and tr for non-linear rheology as found in the
analytical solutions given here valid for n=1. In particular the |Tsb|→1 limit for λ→0 is
also found by Hindmarsh (2004) for non-linear media (Fig. 5c). The relative insensi-
tivity of the tr time scale to wavelengths for high slip ratios, and the chance in phase15

speed from ūb to (m+1)ūb with increasing wavelength is also seen (Fig. 5a and 5b in
Hindmarsh, 2004).

The SSTREAM solutions are much better approximations to the FS solutions than
the SSHEET solutions whenever C̄�1 and λ/h̄�1. For slip ratios typical of active
ice streams the SSHEET solution underestimates the relaxation time scale by several20

order of magnitudes. The SSTREAM solution for tr is, on the other hand, almost equal
to the corresponding FS solution down to wavelengths of about 10h̄. The SSTREAM
solution gives a finite number for tr in the limit λ→0 (in dimensional units the limit is
4cη tanα/u) whereas the same limit for SSHEET theory is zero. The drawback of
this is that once short wavelengths are present in an SSTREAM model they do not25

automatically decay away as they do in an SSHEET model. If, for some reason, in
a numerical model based on the SSTREAM approximation an area is being resolved
with a spatial resolution not fulfilling the shallow-ice condition λ/h̄�1, it is presumably
advisable to eliminate all wavelengths less than about five ice thicknesses through
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suitable filtering.
Comparing the analytical solutions of the SSTREAM and the SSHEET approxima-

tions with the FS solutions presented here and in Gudmundsson (2003) provides a
quick and an easy way of assessing the applicability of these two commonly used ap-
proximations to a particular situation. Results presented by Raymond and Gudmunds-5

son (2005) on small-amplitude response for non-linear media in the FS theory, and by
Hindmarsh (2004) on numerical approximations to the Stokes equation for both linear
and non-linear media, suggest that this approach remains useful even when the rhe-
ology of the media is non-linear. In particular, in cases where the analytical solutions
reveal significant differences between the SSTREAM or the SSHEET approximations10

as compared to the FS solutions, it is improbable that inclusion of non-linear rheology
will reduce these differences.

Appendix A

Shallow ice stream scalings15

We consider the case of an ice stream with horizontal length scale [x] and vertical
length scale [z] where the shallow ice approximation [z]/[x]=δ�1 holds, and write

(x, y, z) = [x](x∗, y∗, δz∗).

where the asterisks denote scaled dimensionless variables. For the mass conservation
equation (vi ,i=0) to be invariant we scale the velocity as20

(u, v, w) = [u](u∗, v ∗, δw).

If we furthermore require the kinematic boundary condition at the surface

∂ts + u∂xs + v ∂ys − w = a,
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where s is the surface to be invariant under the scalings we must have

a = δ[u]a∗,

where a is the accumulation rate. Thus the scale for a is [a]=δ[u]=[w], which seems
reasonable as we can expect the vertical velocity to scale with accumulation rate for
small surface slopes. We also find using the same invariant requirement of the kine-5

matic boundary condition of the surface that the time must be scaled as

t = [x][u]−1t∗.

As a scale for the stresses we use

[σ] = A−1/n([a]/[z])1/n,

which is motivated by the expectation ε̇xx ∼ a/H and Glen’s flow law10

τi j = A
−1/nε̇(1−n)/n ε̇i j ,

where ε̇ is the effective strain rate defined through ε̇ : =(ε̇i j ε̇i j/2)1/2 and τi j are the
deviatoric stress components. We are considering a situation where the vertical shear
components are small compared to all other stress components. A set of scalings
which reflects this situation is15

(σxx, σyy , σzz, σxy , σxz, σyz)

= [σ](σ∗
xx, σ

∗
yy , σ

∗
zz, σ

∗
xy , δσ

∗
xz, δσ

∗
yz). (A1)

Same scale is used for the pressure, that is p=[σ]p∗,
The analysis is done in a coordinate system which is tilted forward in x direction by

the angle α. The scaled momentum equations are20

∂x∗σ
∗
xx + ∂y∗σ

∗
xy + ∂z∗σ

∗
xz = −δ−1τ̄ [σ]−1, (A2)

∂x∗σ
∗
xy + ∂y∗σ

∗
yy + ∂z∗σ

∗
yz = 0, (A3)

δ2∂x∗σ
∗
xz + δ

2∂y∗σ
∗
yz + ∂z∗σ

∗
zz = τ̄ [σ]−1 cotα, (A4)
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where τ̄ : =[z]ρg sinα. We obtain a consistent set of equation for α=O(δ). The slope
α is then no longer just an arbitrary tilt angel and τ̄ can be interpreted as a scale for
the basal shear stress. From the scalings (A1) we then have [τ̄]=δ[σ], and it follows
that the two non-zero terms on the right hand side of the system of Eq. (A4) are of
order unity. Note that only terms of order δ2 are being dropped from the momentum5

equations.
We write the basal sliding law on the form

ub = c(x, y)|Tb|m−1Tb, (A5)

where Tb is the basal stress vector given by Tb=σn̂−(n̂T · σn̂)n̂, with n̂ being a unit
normal vector to the bed pointing into the ice. The function c(x, y) is referred to as the10

basal slipperiness. We find that components of the scaled basal stress vector (T∗
b) are

given by

T ∗bx = δ∂
∗
xb

∗(σ∗
zz − σ∗

xx) − δ∂∗
yb

∗σ∗
xy + δσ

∗
xz + O(δ3), (A6)

T ∗by = δ∂
∗
yb

∗(σ∗
zz − σ∗

yy ) − δ∂∗
xb

∗σ∗
xy + δσ

∗
yz + O(δ3), (A7)

T ∗bz = δ
2((σ∗

zz − σ∗
xx)(∂∗

xb
∗)2 + (σ∗

zz − σ∗
yy )(∂∗

yb
∗)2 (A8)15

−2σ∗
xy∂

∗
xb

∗ ∂∗
yb

∗ + σ∗
xz∂

∗
xb

∗ + σ∗
yz∂

∗
yb

∗) + O(δ4).

Thus T ∗bx and T ∗by are O(δ) while u∗b and v ∗b are, by definition, O(1) and consistency

requires that [σ]m̃[u]−1c = c∗ = O(δ−1) and in this sense the sliding velocity must be
large. This scale for the slipperiness works for the z component as well (see Eq. A8),
as Tbz is O(δ2) and w by definition of order δ. Inserting Eqs. (A6) to (A8) into the basal20

kinematic boundary condition demonstrates that to this order the sliding law is fully
consistent with the basal kinematic boundary condition.

Using ε̇xz=Aτ
n−1σxz one finds that ∂zu=O(δ2). Thus, to second order the horizontal

velocity components u and v are independent of z, from which it follows that ε̇zz is
independent of depth as well and that w varies linearly with depth. A further conse-25

quence is that since the sliding velocity is of order unity and the deformational velocity
51
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ud=O(δ2) the slip ratio ūb/ūd=O(δ−2). Note that in both the field equations and all
boundary conditions all first order terms are identically equal to zero. The theory is
therefore correct to second order in δ.

Only collecting zeroth-order terms followed by vertical integration over depth and
some simple manipulation leads to the following two coupled differential equations for5

the horizontal velocity components u and v

∂x(4hη∂xu + 2hη∂yv) + ∂y (hη(∂xv + ∂yu)) − (u/c)1/m̃

= ρgh∂xs cosα − ρgh sinα, (A9)

∂y (4hη∂yv + 2hη∂xu) + ∂x(hη(∂yu + ∂xv)) − (v/c)1/m̃

= ρgh∂yS cosα. (A10)10

Note that we have now gone back to the dimensional variables. The quantity η is the
effective viscosity defined through τi j=2ηε̇i j . For Glen’s flow law the effective strain
rate is given by

ε̇ =
√

(∂xu)2 + (∂yv)2 + (∂yu + ∂xv)2/4 + ∂xu∂yv,

an expression that is correct to second order.15

Appendix B

Response of flow to basal slipperiness perturbations

We consider the response to small perturbation in basal slipperiness (∆c). Writing
h=h̄, s=s̄+∆s, b=b̄+∆b, u=ū+∆u, v=∆v , w=∆w, and c=c̄+∆c and inserting into (1)20

and (2) gives again the zeroth-order solution (3). The first-order field equations are

4ηh̄∂2
xx∆u + 3ηh̄∂2

xy∆v + ηh̄∂
2
yy∆u − γ∆u

= ρgh̄ cosα∂x ∆s − ρg sinα∆s − γū∆c, (B1)
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and

4ηh̄∂2
yy∆v + 3ηh̄∂2

xy∆u + ηh̄∂2
xx∆v − γ∆v

= ρgh̄ cosα ∂y∆s. (B2)

Fourier and Laplace transforming these equations and solving together with Eqs. (12)
and (13), followed by an inverse Laplace transform gives5

Tsc =
ikh̄ūγ
p ξ

(ept − 1), (B3)

Tuc =
γū((ept − 1)(l2τd h̄ cotα − ikū) + eptpφ)

pξ(γ + ν)
, (B4)

Tvc =
klγūh̄((1 − ept)(τd cotα − 3ikūη) − 3eptpη)

pξ(γ + ν)
, (B5)

and

Twc =
kh̄ūγ(ept(ip + kū) − kū)

pξ
, (B6)10

where p is given by Eq. (15) and as before the abbreviations

γ =
τ1−m
d

mc̄
,

τd = ρgh̄ sinα,

ν = γ + h̄j2η,

ξ = γ + 4h̄j2η,15

φ = γ + h̄(k2 + 4l2)η,

have been used.
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In some limiting cases these expressions obtain much simpler forms. In dimension-
less units the steady state Tuc transfer functions for l=0 is

Tuc =
C̄

1 +m(1 + 2k2C̄ + ikm cotα)
,

and for k=0 one finds

Tuc =
2C̄

2 +ml2C̄
,5

for any t, giving the perturbation in forward velocity to slipperiness perturbations
aligned in the direction of mean flow. It is an interesting fact that the response of
the longitudinal velocity component to basal perturbations aligned with the mean flow
direction is time independent. The steady-state dimensionless form of the Tsc transfer
function is10

Tsc = − k

k +m(k(1 + 2j2C̄) + ij2 cotα)
. (B7)
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Fig. 1. (a) The phase speed (|vp|) as a function of wavelength for θ=0. The dashed-dotted
curve is based on the shallow ice sheet (SSHEET) approximation, the dashed one is based
on the shallow ice stream (SSTREAM) approximation, and the solid one is a full-system (FS)
solution. The surface slope is α=0.005 and slip ratio C̄=30. The unit on the y axis is the mean
surface velocity of the full-system solution (ū=C̄+1=31).
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Fig. 1. (b) The x component of the group velocity (ug) as a function of wavelength for θ=0.
Values of mean surface slope and slip ratio are 0.005 and 30, respectively.
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Fig. 2. (a) The phase speed (|vp|) of the full-system solution as a function of wavelength λ and
orientation θ of the sinusoidal perturbations with respect to mean flow direction. The mean
surface slope is α=0.002 and the slip ratio is C̄=100. The plot has been normalised with the
non-dimensional surface velocity ū=C̄+1=101 of the full-system solution.
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Fig. 2. (b) The shallow-ice-stream phase speed as a function of wavelength λ and orientation
θ. As in Fig. 2a the mean surface slope is α=0.002 and the slip ratio is C̄=100 and the plot
has been normalised with the non-dimensional surface velocity ū=C̄+1=101 of the full-system
solution.

59

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-discussion.html
http://www.egu.eu


TCD
2, 23–74, 2008

Shallow ice stream
approximation

G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

10
0

10
1

10
2

10
1

10
2

λ (̄h)

t r  (
a)

Full system 
solution

Shallow Ice Stream
Approximation

Shallow Ice Sheet
Approximation

Fig. 3. The relaxation time scale (tr ) as a function of wavelength λ. The wavelength is given
in units of mean ice thickness (h̄) and tr in years. The mean surface slope is α=0.002 and the
slip ratio is C̄=999. For these values tr is on the order of 10 years for a fairly wide range of
wavelengths. Lowering the slip ratio will reduce the value of tr . It follows that ice streams will
react to sudden changes in basal properties or surface profile by a characteristic time scale of
a few years.
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(dotted line, Eq. 19 in Gudmundsson, 2003) and a full system solution (solid line, Eq. 75 in
Gudmundsson, 2003) are shown.
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Fig. 6. (a) The SSTREAM amplitude ratio (|Tsb|) between surface and bedrock topography
(Eq. 19). Surface slope is 0.002 and the slip ratio C̄=99. λ is the wavelength of the sinu-
soidal bedrock perturbation and θ is the angle with respect to the x axis, with θ=0 and θ=90
corresponding to transverse and longitudinal bedrock undulations, respectively.
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Fig. 6. (b) The FS amplitude ratio between surface and bedrock topography (|Tsb|) from Eq. (75)
in Gudmundsson (2003). The shape of the same transfer function for the same set of parame-
ters based on the SSTREAM approximation is shown in Fig. 6a.

64

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/23/2008/tcd-2-23-2008-discussion.html
http://www.egu.eu


TCD
2, 23–74, 2008

Shallow ice stream
approximation

G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

log
10

(λ) (h̄)

θ 
  (

de
g.

)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

100

Fig. 7. (a) The steady-state amplitude ratio (|Tub|) between longitudinal surface velocity (∆u)
and bedrock topography (∆b) in the shallow ice stream approximation as given by Eq. (21).
Surface slope is 0.002 and the slip ratio is 99.
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Fig. 7. (b) The steady-state amplitude ratio (|Tub|) between longitudinal surface velocity (∆u)
and bedrock topography (∆b) (Eq. 75 in Gudmundsson, 2003). The shape of the same transfer
function for the same set of parameters, but based on the shallow ice stream approximation, is
shown in Fig. 7a.
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Fig. 8. (a) The steady-state amplitude ratio (|Tvb|) between transverse velocity (∆v) and bedrock
topography (∆b) in the shallow ice stream approximation (Eq. 22). Surface slope is 0.002 and
the slip ratio is 99.
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Fig. 8. (b) The steady-state amplitude ratio (|Tvb| between transverse velocity (∆v) and bedrock
(∆b) ) from Eq. (75) in Gudmundsson (2003). The shape of the same transfer function for the
same set of parameters, but based on the shallow ice stream approximation, is shown in Fig. 8a.
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Fig. 9. Steady-state response of surface topography to a perturbation in bedrock topography
for linear and non-linear sliding. All curves are for linear media (n=1). The solid lines are
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100.
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(ū
d
)

λ (h̄)

 

 

10
−1

10
0

10
1

10
2

10
3

10
4

10
5
0

0.005

0.01

0.015

0.02

0.025

0.03

|T
w

c
|

(ū
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Fig. 11. Steady-state response of surface longitudinal (u), transverse (v), and vertical (w) ve-
locity components to a basal slipperiness perturbation. The surface slope is 0.002 and the slip
ratio C̄=10. The Tuc and Twc amplitudes are calculated for slipperiness perturbations aligned
transversely to the flow direction (θ=0). For Tvc, θ=45 degrees. Of the two y axis the scale to
the left is for the horizontal velocity components (Tuc and Twc), and the one to the right is the
scale for Tuc.
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Fig. 12. Steady-state response of the surface longitudinal (∆u) velocity component to a basal
slipperiness perturbation in the shallow ice stream approximation (Eq. B4). The surface slope
is 0.002 and the slip ratio C̄=99.
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Fig. 13. (a) Surface topography response to a flow over a Gaussian-shaped bedrock distur-
bance as given by a FS (lower half of figure) and a SSTREAM solution (upper half of figure).
The mean flow direction is from left to right. Surface slope is 3 degrees and mean basal veloc-
ity equal to mean deformational velocity (C̄=1). The spatial unit is one mean ice thickness (h̄).
The Gaussian-shaped bedrock disturbance has a width of 10 h̄ and it’s amplitude is 0.1 h̄. The
problem definition is symmetrical about the x axis (y=0) and any deviations in the figure from
this symmetry are due to differences in the FS and the SSTREAM solutions.
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Fig. 13. (b) Response in surface velocity to a Gaussian-shaped bedrock perturbation. All
parameters are equal to those in Fig. 13a. The contour lines give horizontal speed and the
vectors the horizontal velocities. The velocity unit is mean-deformational velocity (ūd ). The slip
ratio is equal to one, and the mean surface velocity is 2ūd . The upper half of the figure is the
SSTREAM solution and the lower half the corresponding FS solution.
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